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Around 1964, I was a graduate student struggling with a major
part of my dissertation involving an approximation in a turning
point problem. Since I had to integrate the approximation, I had to
be particularly careful about the error. There was no shortage of
discussion of this problem in the literature. But I was not
completely comfortable with the O-symbols and uniformity
statements in these articles. I was very fortunate to find Olver’s
[12]:
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Frank Olver 1963 [12]
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ERROR BOUNDS FOR FIRST APPROXIMATIONS IN 
TURNING-POINT PROBLEMS* 

F. W. J. OLVERt 

1. Introduction and summary. In this paper we consider approximate 
solutions of the differential equation 

(1.01) =w {u2p(u, x) + q(u, X) } W, 
dX2 

in which u is a large parameter, We suppose that p(u, x) and q(u, x) are 
free from singularities in the x-region considered, and that p(u, x) has 
there a simple zero, a so-called turning-point or transition-point of the 
differential equation. It is well known that in these circumstances approxi 
mate solutions can be expressed in terms of Airy functions. The asymptotic 
nature of these approximations as Jul -* oo has been investigated by many 
writers, particularly Langer [1, 2], Cherry [3], Jeffreys [4], Erd6lyi [5, 6] and 
Olver [7, 8]. In the present investigation, we shall establish, for the first 
time, explicit strict bounds for the errors of the Airy-function approxima- 
tions. Similar bounds have been given by the writer in [9] for the 'Liou- 
ville-Green' approximation which holds in regions in which the differential 
equation is free from singularities and turning points, and the present 
investigation follows similar lines. 

In this paper, we consider in detail the case of the first approximation, 
and real (though not necessarily bounded) values of x. The theory then 
takes its simplest form, but nevertheless should prove quite adequate for 
many physical problems involving a second-order differential equation 
with a single turning point. In a second paper [10], corresponding theorems 
for complete asymptotic expansions and complex variables are established. 

The paper is arranged as follows. The next section, ?2, is a preliminary 
in which a number of relevant properties of the functions Ai and Bi are 
stated. We also introduce certain auxiliary functions and constants asso- 
ciated with Ai and Bi which are used in the following sections, and give 
some numerical tables. In ?3 we establish our main theorem. This gives 
error bounds for the approximate solutions Ai(x) and Bi(x) of the differ- 
ential equation 

2 

(1.02) dw {x +f(x)}w, 

* Received by the editors May 16, 1962, and in final revised form February 18, 
1963. 

t National Bureau of Standards, Washington, D. C. 
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Error Bounds

752 F. W. J. OLVER 

TABLE 1 

Auxiliary functions for negative x 

x M(x) N(x) I xi 1141(X) x I -141N(x) X(X) ; (x) 

0.0 0.71 0.52 0.00 0 0.52 -0.52 
-0.2 .66 .52 .44 0.78 .66 - .50 
-0.4 .63 .54 .50 .68 .81 - .43 
-0.6 .59 .55 .52 .63 0.98 - .33 
-0.8 .57 .57 .54 .61 1.17 -.19 

-1.0 i 0.55 0.59 0.55 0.59 1.38 -0.02 
-1.2 .53 .61 .55 .58 1.60 .18 
-1.4 .51 .63 .55 .58 1.84 .39 
-1.6 ,50 .65 .56 .57 2.09 .63 
-1.8 .48 .66 .56 .57 2.36 0.88 

-2 0.47 0.68 0.56 0.57 2.64 1.15 
-3 .43 +75 .56 .57 4.23 2.71 
-4 .40 .80 .56 .57 6.11 4.57 

-5 0.38 0.84 0.56 0.56 8.23 6.68 
- 6 .36 .88 .56 .56 10.58 9.02 
-7 .35 .92 .56 .56 13.13 11.57 
-8 .34 .95 .56 .56 15.87 14.31 
-9 .33 0.98 .56 .56 18.78 17.22 

-10 0.32 1.00 0.56 0.56 21.86 20.30 

_ 00 0.00 oc 0.56 0.56 C o 

differential equation 

(3.01) d2W {x + f(x) }w 

has solutions w1(x), W2(X), such that 
(3.02) wl(x) = Ai(x) + E3(x), w,'(x) = Ai'(x) + ql(x), 

(3.03) w2(x) = Bi(x) + E2(x), w2'(x) -Bi'(x) + fl2(X), 

where 

l (X) I < X-l{eXOF1(x) -_ 1}E'(x) M(x) 

(3.04) < _? 1 I{eXIF1(x) - 1}EF(x)N(X) 

1 E2(X) I (X2/XI){eXF2(x) - 1JE(x)M(x), 
(3.05) 1 772(X) I < (X2/Xl) {eXI F2(x) _ 1}E(x)N(x); 
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Error bounds

What was remarkable about Olver’s article was the clarity of the
statements about error bounds [12, (3.04), (3.05)]. The properties
of functions F1,F2,M and E were treated in detail. They could be
thought of as “special functions” in their own right. This was
exactly what I needed and I was able to complete the related parts
of my dissertation.
SInce then, I have had many opportunities to enjoy and benefit
from Frank’s written work. I have also benefitted from his
tremendous support for some of my own work. Thanks, Frank!
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Bessel function Jν(x)

In case ν > −1,

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)

has an infinite set of positive zeros. jνk , k = 1, 2, . . . .
x−νJν(x) is even. For individual values of ν, the form of the graph
of Jν(x) is well-known [14, Fig. 10.3.1].
There is a diagram in [18, p. 510] that gives a good idea of the
behaviour of the zeros as functions of ν note that jνk → 0 as
ν → −k :
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“Watson” diagram
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Cylinder functions

We also consider the Bessel function Yν(x) with positive zeros
yνk , k = 1, 2, . . . . Cylinder functions are linear combinations of
Jν(x) and Yν(x):

Cν(x , α) = cosαJν(x)− sinαYν(x)

We use the notation c(ν, α, k) for a zero of Cν(x , α),
k representing the rank (first, second, etc.)
How does c(ν, α, k) vary with ν, k , α?

I dc/dν – Watson 1922 [18, p. 508]

I dc/dα – Olver 1950 [10, (2.12)]

I dc/dk – Elbert 2001 [2, (1.4)]
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Variation of c(ν, α, k) with ν

G. N. Watson (1922)

dc

dν
= 2c

∫ ∞

0
K0(2c sinht)e−2ν t dt

where

K0(x) =

∫ ∞

0
e−xcosht dt.

Á. Elbert (1977) used this formula to show that jνk is a concave
increasing function of ν on −k < ν <∞.
Á. Elbert and A. Laforgia use this formula very effectively during
the 1980s and 1990s to get inequalities and other properties for the
zeros of Bessel functions. See [2] for references.
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Olver [10], variation with α:
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Variation of c(ν, α, k) with α

F. W. J. Olver (1950): linearly independent solutions w1,w2 of

d2w

dz2
+ q(z)w = 0,

with q(z) analytic.

C (z , α) = cosα w1(z)− sinα w2(z)

with a zero ρ(α). Then with ′ = d/dα, ρ(α) satisfies

2ρ′ρ′′′ − 3ρ′′2 + 4q(ρ)ρ′4 − 4ρ′2 = 0.

Can be approximated by q(ρ)ρ′4 − ρ′2 = 0, when ρ(α) varies slowly
with α.
This observation was the basis for a successful method of finding
the zeros of Bessel functions in the “gap region” where neither
methods based on series nor those based on asymptotic expansions
were effective.
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Olver 1951
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Olver 1951 (cont.)
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Variation of c(ν, α, k) with α: continuous rank

y ′′ + f (x)y = 0, a < x <∞, (1)

f continuous on (a,∞), equation nonoscillatory at a, oscillatory at
∞. There are solutions y1(x), y2(x) such that for every solution
y(x) linearly independent of y1, we have

lim
x→a+

y1(x)/y(x) = 0.

W (y1, y2) = y1(x)y ′2(x)− y ′1(x)y2(x) ≡ 1,

Let
p(x) = y2

1 (x) + y2
2 (x).

Suppose that, for a fixed c , a < c < b,
∫ c

a

du

p(u)
= lim

ε→0+

∫ c

a+ε

du

p(u)
<∞.
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Continuous rank (cont.)

y(x , α) = cosα y1(x)− sinα y2(x)

The change of variables y(x) = [p(x)]1/2u(t), x ′(t) = p(x)
transforms (1) into the trigonometric equation u′′(t) + u(t) = 0
(see, e.g., [8, Lemma 2.3]) with general solution
u(t) = A sin(t + B). Hence the general solution of (1) is given by

y(x) = A[p(x)]1/2 sin

(∫ x

a

dt

p(t)
+ B

)
.

We may redefine

y1(x) =
√

p(x) sin

(∫ x

a

du

p(u)

)
,

y2(x) = −
√

p(x) cos

(∫ x

a

du

p(u)

)
.
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Continuous rank (cont.)

The zeros of y1(x) on (a, b) are the (finitely or infinitely many)
numbers xk for which

∫ xk

a

dt

p(t)
= kπ, k = 1, 2, . . . .

We define a function x(κ) of the continuous variable κ by

∫ x(κ)

a

dt

p(t)
= κπ, 0 ≤ κ <∞.

This idea is due to J. Vosmanský [17].
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Continuous rank (cont.)

For positive integer values of κ, x(κ) is a zero of y1. For each
nonintegral value of κ, x(κ) is a zero of some solution of (1) other
than y1. In fact, for 0 < α < π, the solution

y(x , α) = cosαy1(x)− sinαy2(x) = [p(x)]1/2 sin

(∫ x

a

dt

p(t)
+ α

)

has its zeros where
∫ x

a

dt

p(t)
= (k − α/π)π,

i.e., at the points x(k − α/π), k = 0, 1, 2, . . . .

Martin E. Muldoon Zeros of Special Functions



Continuous rank (cont.)

α and k are not really independent; they may be subsumed in a
single variable κ = k − α/π. Elbert and Laforgia [3] explained this
idea in the case of Bessel functions. Thus each zero of y(x , α)
increases from one zero xk of y1(x) to the next larger one xk+1. At
the same time a new smallest zero appears and increases from a to
x1. Thus it makes sense to define x(κ) for any real κ ≥ 0, by
x(0) = a and x(κ) = xk(α) where k = dκe is the largest integer
less than κ+ 1 and α = π(k − κ). Thus x(κ) is a continuous
increasing function of κ on [0,∞). The positive zeros of y1(x)
correspond to x(k), k = 1, 2, . . . and those of y2(x) correspond to
x(k − 1/2), k = 1, 2, . . . .
The graphs of the zeros of cylinder functions thus fill in the gaps in
the diagram:
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Zeros of cylinder functions
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Variation of c(ν, α, κ) with κ

Á. Elbert [2]

d

dκ
jνκ =

π2

2

[
J2
ν (jνκ) + Y 2

ν (jνκ)
]

d

dκ
jνκ = 4jνκ

∫ ∞

0
K0(2jνκsinht)cosh2νt dt

Compare (Watson)

d

dν
jνκ = 2jνκ

∫ ∞

0
K0(2jνκsinht) exp(−2νt) dt

The followings graphs are from [9].
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Variation of c(ν, α, κ) with κ
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Variation of c(ν, α, κ) with κ (cont.)6 MARTIN E. MULDOON
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Figure 2. Approximate graph of the curve
x = cosκ, y = sinκ, z = j5κ, 0.2 ≤ κ ≤ 4.

then we get strict inequality in (5.4). The results remains true when the factors
(−1)n, (−1)n+1 are simultaneously removed from (5.3), (5.4) and (5.5).

This result is contained essentially in [23, §3] and the proof is essentially the
same as that of [17, Lemma 2.1]. It is based on the successive formulas x′(κ) =
p(x), x′′(κ) = p′(x)x′(κ), x′′′(κ) = p′′(x)[x′(κ)]2 + p′(x)x′′(κ), . . . . By induction,
one can show that, for each n, (−1)nx(n+1)(κ) is a sum of non-negative terms. In
the case of the stronger hypotheses (5.5), one can show, as in [18] that one of these
terms is positive.

Theorem 5.1 generalizes the case of Bessel functions (ν > 1/2) considered in [12,
Corollary 3.3]. It extends to derivatives with respect to κ the special case λ = 0 of
[17, Theorem 2.1], which dealt with finite differences ∆nxk.

6. Hermite functions

The equation

(6.1) y′′ + (2λ+ 1− x2)y = 0,

has linearly independent solutions

(6.2) y1(x) =
[

π1/2

2λ+1Γ(λ+ 1)

]1/2
e−x

2/2Hλ(x) = cos
λπ

2
u(x, λ) + sin

λπ

2
v(x, λ),

(6.3)

y2(x) =
[

π1/2

2λ+1Γ(λ+ 1)

]1/2
e−x

2/2Gλ(x) = − sin
λπ

2
u(x, λ) + cos

λπ

2
v(x, λ),
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Variation of c(ν, α, κ) with κ (cont.)6 MARTIN E. MULDOON
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x = cosκ, y = sinκ, z = j5κ, 0.2 ≤ κ ≤ 4.

then we get strict inequality in (5.4). The results remains true when the factors
(−1)n, (−1)n+1 are simultaneously removed from (5.3), (5.4) and (5.5).

This result is contained essentially in [23, §3] and the proof is essentially the
same as that of [17, Lemma 2.1]. It is based on the successive formulas x′(κ) =
p(x), x′′(κ) = p′(x)x′(κ), x′′′(κ) = p′′(x)[x′(κ)]2 + p′(x)x′′(κ), . . . . By induction,
one can show that, for each n, (−1)nx(n+1)(κ) is a sum of non-negative terms. In
the case of the stronger hypotheses (5.5), one can show, as in [18] that one of these
terms is positive.

Theorem 5.1 generalizes the case of Bessel functions (ν > 1/2) considered in [12,
Corollary 3.3]. It extends to derivatives with respect to κ the special case λ = 0 of
[17, Theorem 2.1], which dealt with finite differences ∆nxk.

6. Hermite functions

The equation

(6.1) y′′ + (2λ+ 1− x2)y = 0,

has linearly independent solutions

(6.2) y1(x) =
[

π1/2

2λ+1Γ(λ+ 1)

]1/2
e−x

2/2Hλ(x) = cos
λπ

2
u(x, λ) + sin

λπ

2
v(x, λ),

(6.3)

y2(x) =
[

π1/2

2λ+1Γ(λ+ 1)

]1/2
e−x

2/2Gλ(x) = − sin
λπ

2
u(x, λ) + cos

λπ

2
v(x, λ),
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Variation of c(ν, α, κ) with κ

Outline
Introduction

General results
Bessel functions

jνκ as a function of κ

Lee Lorch and Martin E. Muldoon Monotonic sequences related to zeros of Bessel functions

Martin E. Muldoon Zeros of Special Functions



Convexity, concavity

j1/2,κ = κπ, j−1/2,κ = (κ− 1/2)π

jνκ is convex for |ν| < 1/2, concave for |ν| > 1/2
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Higher monotonicity

We have

(−1)n+1 dn

dκn
jνκ > 0, |ν| > 1/2, n = 1, 2, . . .

This generalizes the result of L. Lorch and P. Szego [8]

(−1)n+1∆n
kcνk > 0, |ν| > 1/2, n = 1, 2, . . .
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Hermite functions

The differential equation

y ′′ − 2ty ′ + 2λy = 0.

has a solution

Hλ(t) = −sinπλ Γ(1 + λ)

2π

∞∑

n=0

Γ ((n − λ)/2)

Γ(n + 1)
(−2t)n

which reduces to the Hermite polynomials for λ = 0, 1, 2, . . . . In
terms of confluent hypergeometric functions,

Hλ(t) =
2λ√
π

[
cos

λπ

2
Γ(
λ

2
+

1

2
)1F1(−λ

2
,

1

2
; t2)

+2t sin
λπ

2
Γ(
λ

2
+ 1)1F1(−λ

2
+

1

2
,

3

2
; t2)

]
.
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Hermite functions (cont.)

We can define a solution Gλ(t), so that e−t2/2Hλ(t) and
e−t2/2Gλ(t) are linearly independent solutions of the modified
Hermite equation

y ′′ + (2λ+ 1− t2)y = 0.

The Wronskian of e−t2/2Hλ(t) and e−t2/2Gλ(t) is given by

W = π−1/22λ+1Γ(λ+ 1).

The zeros of Hλ(t) as functions of λ were considered in [4].
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Zeros of Hλ(t) as functions of λ, λ > −1

ZEROS OF HERMITE FUNCTIONS 5

1 2 3 4 5

-2

-1

0

1

2 h1(λ)

h2(λ)

Figure 1

It is of interest to consider when h(λ, κ) = 0. For example, for an odd integral
value 2n + 1 of λ we are dealing with the Hermite polynomial H2n+1(x) and the
(n + 1)st zero is at the origin, that is, h(2n + 1, n + 1) = 0. For general α, we have
from (1.2) and (2.1),

cosα Hλ(0)− sin α Gλ(0) =
2λ

π
Γ

(
λ

2
+

1
2

)
cos(α− λπ

2
),

from which it follows that h(2κ− 1, κ) = 0.
In view of the notation introduced in (4.6), the curves of Figure 1, starting

from the top, may be re-labelled h(λ, 1), h(λ, 2), . . . , where h(λ, 1) is the largest
zero of Hλ(x), h(λ, 2) is the next largest, etc.

The zeros of Gλ(x) could be added to Figure 1, as curves lying about halfway
between the curves representing the zeros of Hλ(x). In fact, if we consider the
zeros of all Hermite functions, their graphs would fill the entire half-plane λ > −1
in Figure 1.

From (4.6), and the consequence of (4.2) that pλ(u) is even in u, we get

(4.7)
∫ ∞

h(λ,2κ)

du

pλ(u)
= 2

∫ ∞

h(λ,κ)

du

pλ(u)
,

so

(4.8) lim
λ→λ+

0

h(λ, κ) = 0,

if and only if

(4.9) lim
λ→λ+

0

h(λ, 2κ) = −∞.

We note that h(λ, κ) satisfies the differential equation (4.3) on (κ− 1,∞), that
h(λ, 2λ− 1) = 0 and that

lim
λ→κ−1

h(λ, κ) = −∞.
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Hermite functions (cont.)

Á. Elbert and MEM [4] proved a formula for the derivative with
respect to λ of a zero h(λ) of a solution of a linear combination of
Hλ and Gλ.

dh

dλ
=

√
π

2

∫ ∞

0
e−(2λ+1)τφ(h

√
tanh τ)

dτ√
sinh τ cosh τ

, (2)

for λ > −1, where
φ(x) = ex2

erfc(x),
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Hermite functions (cont.)

This formula (2) for dh/dλ was useful [5] in finding an asymptotic
expansion for the zeros (as λ→ +∞)
The function

y(t) = e−t2/2[cosα Hλ(t)− sinα Gλ(t)]

satisfies the differential equation

y ′′ + (2λ+ 1− t2)y = 0,

and hence, if we write

µ = (2Λ)−1/3, Λ =
√

2λ+ 1, Cλ = π−1/32−λ/2−1/4λ1/2,

we find, after some simplification, that

Y (λ, t) = Cλy

(
1

2µ3
− µt

)

satisfies the differential equation

d2Y

dt2
+ (t − µ4t2)Y = 0. (3)
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Hermite functions (cont.)

Asymptotic information shows that Y (λ, t) satisfies the initial
conditions

Y (0) = cosα Ai(0)−sinα Bi(0), Y ′(0) = cosα Ai ′(0)−sinα Bi ′(0).
(4)

The initial conditions (4) are independent of µ and the coefficient
term t − µ4t2 in (3) is an entire function of µ for each fixed t.
Hence, for fixed t, the solutions of (3), (4) are entire functions of
µ.
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Hermite functions (cont.)

Thus a zero z(µ) of a solution of a nontrivial solution of (3, 4) is
analytic in µ in a neighbourhood of µ = 0:

z(µ) =
∞∑

k=1

ckµ
k−1, |µ| < R,

for some R > 0, where c1 is the corresponding zero of
cosαAi(−x)− sinαBi(−x). In other words, if h(λ) is a zero of a
solution of (28), then

h(λ) = Λ + Λ−1/3
∞∑

k=1

akΛ−4(k−1)/3,

where the series converges for Λ > M, for some M > 0.
This is also an asymptotic series

h(λ) ∼ Λ + Λ−1/3
∞∑

k=1

akΛ−4(k−1)/3, Λ→∞,

in the usual sense.
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Hermite functions (cont.)

For h(k , α), the kth zero, in decreasing order, of a Hermite
function

cosαHλ(x)− sinαGλ(x),

the expansion will involve a− a(k , α) where 2−1/3a is the kth
positive zero of

cosαAi(−x)− sinαBi(−x).

Using (2), the first five terms are given by [5]

h(k, α) = Λ− aΛ−1/3 − 1

10
a2Λ−5/3 +

[
9

280
− 11

350
a3

]
Λ−3

+

[
277

12600
a− 823

63000
a4

]
Λ−13/3 + · · · ,
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Tricomi’s asymptotic formula

G. N. Watson [18] provides some large ν asymptotic
approximations for zeros of the Bessel functions Jν(x) and Yν(x)
and the first of these was generalized by F. G. Tricomi [16]. This is
expansion is also convergent.
As pointed out by L. Gatteschi (1974), if µ = 22/3ν−2/3, a
constant multiple of the function Jν [ν exp(−µx)] satisfies

d2y

dx2
− xy = c(µ, x)y , (5)

y(0) = Ai(0), y ′(0) = Ai ′(0),

where

c(µ, x) =

{
µ−1[1− µx − e−µx ], µ 6= 0,
0, µ = 0

(6)
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Tricomi’s asymptotic formula (cont.)

For each fixed x , c(µ, x) is analytic at µ = 0. Thus the zeros of
solutions of (5) are analytic functions of µ and may be expressed in
the form ∞∑

k=0

anµ
n, |µ| < R,

for some R > 0.
Now Jν [ν exp(−µx)] has its zeros x where j = ν exp(−µx). Hence

j = ν exp

[
−
∞∑

k=0

anµ
n

]
= ν(1− a0µ+ bµ2 + . . . ), µ = (2/ν)2/3.
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Analyticity of j2
ν1/(4(ν + 1))

R. Piessens (1984) showed that

jν1 = 2(ν + 1)1/2

[
1 +

ν + 1

4
− 7(ν + 1)2

96
+

49(ν + 1)3

1152
− · · ·

]

for −1 < ν < 0. As ν decreases through −1, the zeros ±jν1
become purely imaginary and move away from the origin returning
there as ν approaches −2. This suggests considering j2ν1, ν > −2:
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Graph of j2
ν1, ν > −2 [7]
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Figure 1: j2
ν1 vs. ν

4 Dini functions and derivatives of Bessel

functions

Here we deal with the case fν(z) = Hν(z) = αJν(z) + zJ ′ν(z), got by taking
a = 1, b = c = 0, f(ν) = α + ν. We call these Dini functions because they
arise in expansions due to Dini [14, Ch. 18]. In the special case α = 0, we
are, of course, dealing with the zeros of J ′ν(z). There do not appear to be
many results in the literature on the monotonicity of purely imaginary
zeros ±iρ of Hν(z), though it is shown in [6, pp. 78–79] that if α < 0, then
ρ2 is decreasing on (0,−α). We will prove:

Theorem 4.1. Let Hν(z, α) = αJν(z) + zJ
′
ν(z), where −1/2 ≤ α < 1 and

−1 < ν < −α. Hν(z, α) has a pair of purely imaginary zeros ±iρ(ν, α).
ρ2(ν, α) is unimodal on (−1,−α), i.e., there exists a number ν0(α) such
that ρ2(ν, α) increases on (−1, ν0(α)) and decreases on (ν0(α),−α).

Corollary. If ±iρ are purely imaginary zeros of J ′ν(z) then ρ2 is unimodal
on (−1, 0).

8
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Analyticity of j2
ν1/(4(ν + 1)) (cont.)

It is an easy step from this to

j2ν1 = 4(ν+1)

[
1 +

ν + 1

2
− (ν + 1)2

12
+

7(ν + 1)3

144
− 293(ν + 1)4

8640
+ · · ·

]

which is valid for −2 < ν < 0 once we note that j2ν1/(4(ν + 1)) is
analytic at −1.
This follows since z1/2Jν(2

√
(ν + 1)z) satisfies

d2y

dz2
+

[
1− ν2

4z2
+
ν + 1

z

]
y = 0,

the coefficient function being analytic in ν at ν = −1.
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